Loading...

زمینه فعالیت

- تولید انواع گریتینگ فلزی

- تولید گریتینگ کامپوزیت

- تولید انواع قالب بتن قالب خاص

- تولید ماشین آلات CNC

آمار

  • تعداد کالا: 4
  • بازدید امروز: 51
  • بازدید دیروز: 732
  • بازدید کل: 523278

الکترونیک

رشته الکترونیک رشته ای بسیار کاربردی است که با تلفیق نرم افزار ، بسیاری از تکنولوژی های امروزی رو پدید آورده . بنابراین ، دونستن برخی مفاهیم اولیه و اصولی الکترونیک و همچنین طرز کار وسایل و مدارات الکترونیکی می تواند کمک بزرگی به دانشجویان الکترونیک کند.

الکترونیک

الکترونیک

رشته الکترونیک سعی میکند که علم مدارات فنی و منطقی را به علم کاربردی در دسته بندی الکترونیک تشریح کند و هم اساس کار قطعات الکترونیک رو بگه و دیتاشیت فارسی یا طبق استاندارد منتشر کنه برای بهبود و بستن مداراتی که بنا به درخواست ما کارهای که ما میخواهیم انجام دهد.

الکترونیک، دانشی‌ست که به موضوع عبور جریان الکتریکی از چیزهایی مانندنیمه‌رساناها، مقاومت‌ها، القاگرها و خازن‌ها و آثار آن می‌پردازد. الکترونیک همچنین شاخه‌ای از فیزیک است.

یک تراشه الکترونیکی از نوع SMD بز روی یک مدار

یک تراشه الکترونیکی از نوع SMD بز روی یک مدار

طراحی و ساخت مدارهای الکترونیکی برای حل مشکلات عملی، قسمتی از مباحث موجود در مهندسی الکترونیک را تشکیل می‌دهد.[۱]

الکترونیک از علم و تکنولوژی الکتریکی و الکترومکانیکی فاصله گرفته‌است، که با ژنراتور، توزیع، انتقال، ذخیره و تبدیل انرژی الکتریکی به سایر اشکال انرژی و برعکس، با استفاده از ابزاری چون سیم‌ها، موتورهای الکتریکی، باتری‌ها،کلیدها، رله‌ها، ترانسفورماتورها، مقاومت‌ها و سایر اجزای غیرفعال است. این تمایز از سال ۱۹۰۶ و با اختراع ترایود به وسیله لی دفارست آغاز شد که تقویتسیگنال‌های رادیویی و شنیداری ضعیف بدون ابزار غیر مکانیکی صورت گرفت. قبل از ۱۹۵۰ نام این رشته «تکنولوژی رادیویی» بود زیرا کاربرد اصلی آن در طراحی و تحلیل فرستنده‌ها و گیرنده‌های رادیویی و لامپ‌های خلأ بود.

هرچند در برخی موارد مطالعه اِلِمان‌های (قطعات) جدید نیمه‌رسانا و فناوری‌های نزدیک به آن شاخه‌ای از فیزیک (حالت جامد) در نظر گرفته می‌شود، این نوشتار بیشتر به مفاهیم مهندسی الکترونیک می‌پردازد.

محتویات

مدارهای الکترونیکی

مدارهای الکترونیکی برای کارهای مختلفی استفاده می‌شوند. کاربردهای اصلی آنها عبارتند از:

  1. کنترل و پردازش داده‌ها
  2. تبدیل و توزیع توان الکتریکی
  3. اجرای عملیات خاص

قطعات الکترونیکی

قطعات الکترونیکی

هر کدام از این کاربردها با میدان الکترومغناطیسی و جریان الکتریکی سرو کار دارند. گرچه از انرژی الکتریکی در سال‌های انتهایی قرن ۱۹ برای انتقال پیام به وسیله تلگراف وتلفن استفاده می‌شد اما بیشتر پیشرفت‌های مربوط به علم الکترونیک پس از ساخترادیو شکل گرفت. در یک نگاه ساده، یک سیستم الکترونیکی را می‌توان به سه بخش تقسیم کرد:

  • ورودی: حسگرهای الکترونیکی و مکانیکی (یا مبدل‌های انرژی). این تجهیزات سیگنال‌ها یا اطلاعات را از محیط خارج دریافت کرده و سپس آن‌ها را به جریان، ولتاژ (سیگنال‌های الکتریکی) تبدیل می‌کنند.
  • پردازنده سیگنال: این مدارها در واقع وظیفه پردازش، تفسیر و تبدیل سیگنال‌های ورودی برای استفاده از آن‌ها در کاربرد مناسب را بر عهده دارند. معمولاً در این بخش پردازش سیگنال‌ها بر عهده پردازنده سیگنال‌های دیجیتال است.
  • خروجی: فعال کننده‌ها یا دیگر تجهیزات (مانند مبدل‌های انرژی) که سیگنال‌های ولتاژ یا جریان را به صورت خروجی مناسب در خواهند آورد (مانند راه انداختن یک موتور یا پخش صدا از بلندگو).

برای مثال یک تلویزیون هر سه بخش بالا را دارد. ورودی تلویزیون سیگنال‌های پراکنده‌شده در هوا را دریافت‌ کرده (به وسیله آنتن) و آن‌ها را به ولتاژ و جریان مناسب برای کار دیگر بخش‌ها تبدیل می‌کند. پردازشگر سیگنال پس از دریافت داده‌ها از ورودی اطلاعات مورد نیاز مانند میزان روشنایی، رنگ و صدا را از آن استخراج می‌کند. در نهایت قسمت خروجی این اطلاعات را دوباره به صورت فیزیکی در خواهد آورد این کار به وسیله یک لامپ اشعه کاتدی (در مدل‌های قدیمی) یا نمایش‌گر ال‌سی‌دی برای نمایش تصویر و یک بلندگو برای پخش صدا انجام خواهد شد.

تاریخچه قطعات الکترونیکی

لامپ‌های خلاء یکی از اولین قطعات الکترونیکی بودند که در صنعت الکترونیک تا اواسط دهه ۱۹۸۰ میلادی حضور داشتند.[۲] از آن زمان به بعد، قطعات نیمه هادی بیشتر دنیای الکترونیک را در دست گرفتند. با این حال لامپ‌های خلاء هنوز هم در برخی از دستگاه‌ها مانندتقویت‌کننده‌های رادیویی قدرت بالا، لامپهای پرتوی کاتدی، تجهیزات صوتی تخصصی، تقویت‌کننده‌های گیتار و برخی از دستگاه‌هایمایکروویو استفاده می‌شوند.[۳] که بعدها با پیشرفت میکروالکترونیک، قطعات کوچک شده و به اشکال امروزی درآمدند. امروزه مدارها حد زیادی از حالت سخت‌افزاری خارج شده و با بهره‌گیری از میکروکنترولرها یا چیپ‌های FPGA و پیشرفت روزافزون آن‌ها بیشتر کارها نرم‌افزاریپیاده می‌شوند. ریز کنترل گر

قطعاتی مثل ترانزیستور، آی‌سی، خازن، دیود، مقاومت و … در مدارهای الکترونیکی به کار می‌روند.

انواع مدارهای الکترونیکی

مدارهای الکترونیکی را می‌توان به دو گروه تقسیم کرد: آنالوگ و دیجیتال. یک دستگاه الکترونیکی ممکن است که از یک گروه یا ترکیبی از این دو گروه مداری تشکیل شده باشد.

اغلب دستگاه‌های الکترونیکی آنالوگ؛ مانند گیرنده‌های رادیویی، از ترکیبی از چند مدار ساخته شده‌اند. مدارهای آنالوگ با سطح ولتاژهای متنوع (و پیوسته‌ای) سر و کار دارند، بر خلاف مدارهای دیجیتال که تنها دو سطح ولتاژ در آن‌ها تعریف شده‌است.

مدار دیجیتال، از حضور حداقل یک قطعه دیجیتالی در کنار سایر قطعات ساخته می‌شود.

در این نوع، هسته اصلی مدار یک میکروپروسسور یا میکروکنترل‌گر و یا یک IC است که با سیگنال های گسسته (یا همان دیجیتال) و پیوسته (یا همان آنالوگ) به صورت همزمان یا مجزا در ارتباط است.

مدارهای آنالوگ صرفا از قطعات غیر دیجیتالی مثل خازن و مقاومت و سلف و … تشکیل شده‌اند که فقط با سیگنال های آنالوگ کار می‌کنند.

منبع تغذیه یا باتری نقش پمپ محرک مدار را ایفا می‌کند که باعث می‌شود جریان از سمت با پتانسیل بیشتر در مدار جاری شده و با عبور از قطعه‌ها به پتانسیل کمتر برود.

جریان فقط در یک مدار بسته برقرار می‌شود و اگر در یک محل از مدار فاصله ای بیفتد جریان قطع خواهد شد.

به این حالت مدار باز (open circuit) گفته می‌شود.

اگر مدار را بدون حضور هیچ قطعه ای ببندیم و دو سر منبع ولتاژ را با یک سیم به‌هم وصل کنیم، در اثر این اتفاق و بنابر قانون اهم به دلیل صفر بودن مقاومت، جریان بینهایت از سیم گذشته و منبع تغذیه و سیم خواهند سوخت.

به این حالت از مدار اتصال کوتاه (Short Circuit) گفته می‌شود.

جستارهای وابسته

منابع

[۴]

  1.  الکترونیک(آفتاب)
  2.  Sōgo Okamura (1994). History of Electron Tubes. IOS Press. p. 5. ISBN 978-90-5199-145-1. Retrieved 5 December 2012.
  3.  http://en.wikipedia.org/wiki/Electronics
  4.  حافظی مطلق، ناصر. "الکترونیک کاربردی، جلد نحست: آزمایشگاه الکترونیک1". نگاران سبز، مشهد: 1391. شابک: 0-5-90536-600-978 :ISBN
  5. ویکیپدیا

مشارکت‌کنندگان ویکی‌پدیا. «Electronics». در دانشنامهٔ ویکی‌پدیای انگلیسی، بازبینی‌شده در ۲۷ ژانویه ۲۰۰۸.

This article is about the technical field of electronics. For personal/home-use electronic devices, see consumer electronics. For the scientific magazine, see Electronics (magazine).

Electronics comprises the physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter.[1]

Electronics is widely used in information processing, telecommunication, and signal processing. The ability of electronic devices to act as switches makes digital information-processing possible. Interconnection technologies such as circuit boards, electronics packaging technology, and other varied forms of communication infrastructure complete circuit functionality and transform the mixed electronic components into a regular working system, called an electronic system; examples are computers or control systems. An electronic system may be a component of another engineered system or a standalone device. As of 2018 most electronic devices[2] use semiconductor components to perform electron control.

The identification of the electron in 1897, along with the invention of the vacuum tube, which could amplify and rectify small electrical signals, inaugurated the field of electronics and the electron age.[3]

Commonly, electronic devices contain circuitry consisting primarily or exclusively of active semiconductors supplemented with passive elements; such a circuit is described as an electronic circuit. Electronics deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes, integrated circuits, optoelectronics, and sensors, associated passive electrical components, and interconnection technologies.The nonlinear behaviour of active components and their ability to control electron flows makes amplification of weak signals possible.

Electrical and electromechanical science and technology deals with the generation, distribution, switching, storage, and conversion of electrical energy to and from other energy forms (using wires, motors, generators, batteries, switches, relays, transformers, resistors, and other passive components). This distinction started around 1906 with the invention by Lee De Forest of the triode, which made electrical amplification of weak radio signals and audio signals possible with a non-mechanical device. Until 1950 this field was called "radio technology" because its principal application was the design and theory of radio transmitters, receivers, and vacuum tubes.

The study of semiconductor devices and related technology is considered a branch of solid-state physics, whereas the design and construction of electronic circuits to solve practical problems come under electronics engineering. This article focuses on engineering aspects of electronics.

Branches of electronics

Electronics has branches as follows:

  1. Digital electronics
  2. Analogue electronics
  3. Microelectronics
  4. Circuit design
  5. Integrated circuits
  6. Power electronics
  7. Optoelectronics
  8. Semiconductor devices
  9. Embedded systems
  10. Audio electronics
  11. Telecommunications

Electronic devices and components

An electronic component is any physical entity in an electronic system used to affect the electrons or their associated fields in a manner consistent with the intended function of the electronic system. Components are generally intended to be connected together, usually by being soldered to a printed circuit board (PCB), to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Components may be packaged singly, or in more complex groups as integrated circuits. Some common electronic components are capacitors, inductors, resistors, diodes, transistors, etc. Components are often categorized as active (e.g. transistors and thyristors) or passive (e.g. resistors, diodes, inductors and capacitors).[4]

History of electronic components

Vacuum tubes (Thermionic valves) were among the earliest electronic components.[5] They were almost solely responsible for the electronics revolution of the first half of the twentieth century.[6][7] They allowed for vastly more complicated systems and gave us radio, television, phonographs, radar, long-distance telephony and much more. They played a leading role in the field of microwave and high power transmission as well as television receivers until the middle of the 1980s.[8] Since that time, solid-state devices have all but completely taken over. Vacuum tubes are still used in some specialist applications such as high power RF amplifiers, cathode ray tubes, specialist audio equipment, guitar amplifiers and some microwave devices.

The first practical point-contact transistor was invented at Bell Labs in 1947.[9] The modern metal-oxide-semiconductor (MOS) transistor was later invented at Bell Labs in 1959.[10]

In April 1955, the IBM 608 was the first IBM product to use transistor circuits without any vacuum tubes and is believed to be the first all-transistorized calculator to be manufactured for the commercial market.[11][12] The 608 contained more than 3,000 germanium transistors. Thomas J. Watson Jr. ordered all future IBM products to use transistors in their design. From that time on transistors were almost exclusively used for computer logic and peripherals.

Types of circuits

Circuits and components can be divided into two groups: analog and digital. A particular device may consist of circuitry that has one or the other or a mix of the two types.

Analog circuits

Main article: Analog electronics

Most analog electronic appliances, such as radio receivers, are constructed from combinations of a few types of basic circuits. Analog circuits use a continuous range of voltage or current as opposed to discrete levels as in digital circuits.

The number of different analog circuits so far devised is huge, especially because a 'circuit' can be defined as anything from a single component, to systems containing thousands of components.

Analog circuits are sometimes called linear circuits although many non-linear effects are used in analog circuits such as mixers, modulators, etc. Good examples of analog circuits include vacuum tube and transistor amplifiers, operational amplifiers and oscillators.

One rarely finds modern circuits that are entirely analog. These days analog circuitry may use digital or even microprocessor techniques to improve performance. This type of circuit is usually called "mixed signal" rather than analog or digital.

Sometimes it may be difficult to differentiate between analog and digital circuits as they have elements of both linear and non-linear operation. An example is the comparator which takes in a continuous range of voltage but only outputs one of two levels as in a digital circuit. Similarly, an overdriven transistor amplifier can take on the characteristics of a controlled switch having essentially two levels of output. In fact, many digital circuits are actually implemented as variations of analog circuits similar to this example – after all, all aspects of the real physical world are essentially analog, so digital effects are only realized by constraining analog behavior.

Digital circuits

Digital circuits are electric circuits based on a number of discrete voltage levels. Digital circuits are the most common physical representation of Boolean algebra, and are the basis of all digital computers. To most engineers, the terms "digital circuit", "digital system" and "logic" are interchangeable in the context of digital circuits. Most digital circuits use a binary system with two voltage levels labeled "0" and "1". Often logic "0" will be a lower voltage and referred to as "Low" while logic "1" is referred to as "High". However, some systems use the reverse definition ("0" is "High") or are current based. Quite often the logic designer may reverse these definitions from one circuit to the next as he sees fit to facilitate his design. The definition of the levels as "0" or "1" is arbitrary.

Ternary (with three states) logic has been studied, and some prototype computers made.

Computers, electronic clocks, and programmable logic controllers (used to control industrial processes) are constructed of digital circuits. Digital signal processors are another example.

Building blocks:

Highly integrated devices:

Heat dissipation and thermal management

Heat generated by electronic circuitry must be dissipated to prevent immediate failure and improve long term reliability. Heat dissipation is mostly achieved by passive conduction/convection. Means to achieve greater dissipation include heat sinks and fans for air cooling, and other forms of computer cooling such as water cooling. These techniques use convection, conduction, and radiation of heat energy.

Noise

Electronic noise is defined[13] as unwanted disturbances superposed on a useful signal that tend to obscure its information content. Noise is not the same as signal distortion caused by a circuit. Noise is associated with all electronic circuits. Noise may be electromagnetically or thermally generated, which can be decreased by lowering the operating temperature of the circuit. Other types of noise, such as shot noise cannot be removed as they are due to limitations in physical properties.

Electronics theory

Mathematical methods are integral to the study of electronics. To become proficient in electronics it is also necessary to become proficient in the mathematics of circuit analysis.

Circuit analysis is the study of methods of solving generally linear systems for unknown variables such as the voltage at a certain node or the current through a certain branch of a network. A common analytical tool for this is the SPICE circuit simulator.

Also important to electronics is the study and understanding of electromagnetic field theory.

Electronics lab

Due to the complex nature of electronics theory, laboratory experimentation is an important part of the development of electronic devices. These experiments are used to test or verify the engineer’s design and detect errors. Historically, electronics labs have consisted of electronics devices and equipment located in a physical space, although in more recent years the trend has been towards electronics lab simulation software, such as CircuitLogix, Multisim, and PSpice.

Computer aided design (CAD)

Today's electronics engineers have the ability to design circuits using premanufactured building blocks such as power supplies, semiconductors (i.e. semiconductor devices, such as transistors), and integrated circuits. Electronic design automation software programs include schematic capture programs and printed circuit board design programs. Popular names in the EDA software world are NI Multisim, Cadence (ORCAD), EAGLE PCB and Schematic, Mentor (PADS PCB and LOGIC Schematic), Altium (Protel), LabCentre Electronics (Proteus), gEDA, KiCad and many others.

Packaging methods

Many different methods of connecting components have been used over the years. For instance, early electronics often used point to point wiring with components attached to wooden breadboards to construct circuits. Cordwood construction and wire wrap were other methods used. Most modern day electronics now use printed circuit boards made of materials such as FR4, or the cheaper (and less hard-wearing) Synthetic Resin Bonded Paper (SRBP, also known as Paxoline/Paxolin (trade marks) and FR2) – characterised by its brown colour. Health and environmental concerns associated with electronics assembly have gained increased attention in recent years, especially for products destined to the European Union, with its Restriction of Hazardous Substances Directive (RoHS) and Waste Electrical and Electronic Equipment Directive (WEEE), which went into force in July 2006.

Electronic systems design

Main article: Systems engineering

Electronic systems design deals with the multi-disciplinary design issues of complex electronic devices and systems, such as mobile phones and computers. The subject covers a broad spectrum, from the design and development of an electronic system (new product development) to assuring its proper function, service life and disposal.[14] Electronic systems design is therefore the process of defining and developing complex electronic devices to satisfy specified requirements of the user.

Mounting Options

Electrical components are generally mounted in the following ways:

See also

References

  1. ^ "electronics | Devices, Facts, & History". Encyclopedia Britannica. Retrieved 19 September 2018.
  2. ^ Floyd, Thomas L. Electronics fundamentals : circuits, devices, and applications. ISBN 978-1-292-23880-7. OCLC 1016966297.
  3. ^ "October 1897: The Discovery of the Electron". Retrieved 19 September 2018.
  4. ^ Power Electronics and Variable Frequency Drives: Technology and Applications. Wiley Online Library. 1996. doi:10.1002/9780470547113. ISBN 978-0-470-54711-3.
  5. ^ Guarnieri, M. (2012). "The age of vacuum tubes: Early devices and the rise of radio communications". IEEE Ind. Electron. M. 6 (1): 41–43. doi:10.1109/MIE.2012.2182822.
  6. ^ Guarnieri, M. (2012). "The age of vacuum tubes: the conquest of analog communications". IEEE Ind. Electron. M. 6 (2): 52–54. doi:10.1109/MIE.2012.2193274.
  7. ^ Guarnieri, M. (2012). "The age of Vacuum Tubes: Merging with Digital Computing". IEEE Ind. Electron. M. 6 (3): 52–55. doi:10.1109/MIE.2012.2207830.
  8. ^ Sōgo Okamura (1994). History of Electron Tubes. IOS Press. p. 5. ISBN 978-90-5199-145-1. Archivedfrom the original on 31 December 2013. Retrieved 5 December 2012.
  9. ^ https://www.computerhistory.org/siliconengine/invention-of-the-point-contact-transistor/
  10. ^ https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/
  11. ^ Bashe, Charles J.; et al. (1986). IBM's Early Computers. MIT. p. 386.
  12. ^ Pugh, Emerson W.; Johnson, Lyle R.; Palmer, John H. (1991). IBM's 360 and early 370 systems. MIT Press. p. 34. ISBN 978-0-262-16123-7.
  13. ^ IEEE Dictionary of Electrical and Electronics Terms ISBN 978-0-471-42806-0
  14. ^ J. Lienig; H. Bruemmer (2017). Fundamentals of Electronic Systems Design. Springer International Publishing. p. 1. doi:10.1007/978-3-319-55840-0
    . ISBN 978-3-319-55839-4.

Further reading

External links



نظرات

    ارسال نظر
    • - نشانی ایمیل شما منتشر نخواهد شد.
    • - لطفا دیدگاهتان تا حد امکان مربوط به مطلب باشد.
    • - لطفا فارسی بنویسید.
    • - نظرات شما بعد از تایید مدیریت منتشر خواهد شد.
    (بعد از تائید مدیر منتشر خواهد شد)